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Abstract

Topic modeling is a popular method used to describe biological count

data. With topic models, the user must specify the number of topics

K. Since there is no definitive way to choose K and since a true value

might not exist, we develop a method, which we call topic alignment, to

study the relationships across models with different K. In addition, we

present three diagnostics based on the alignment. These techniques can

show how many topics are consistently present across different models, if

a topic is only transiently present, or if a topic splits in more topics when

K increases. This strategy gives more insight into the process generating

the data than choosing a single value of K would. We design a visual

representation of these cross-model relationships, show the effectiveness

of these tools for interpreting the topics on simulated and real data, and

release an accompanying R package, alto. topic model; microbiota;

community analysis; multiresolution; mixed membership models

0All authors contributed equally to this work and should be included in correspondence.
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1 Introduction

Topic models are probabilistic models for dimensionality reduction of count

data (Blei and others, 2003b). They are widely used in modern biostatis-

tics, finding application in population genetics, genome-wide association stud-

ies, metabolomics, and microbiota studies (Al-Asadi and others, 2019; Reder

and others, 2021; Leite and Kuramae, 2020; González-Blas and others, 2019;

Sankaran and Holmes, 2019).

These models are appealing because they are more expressive than cluster-

ing yet have simple interpretations (Airoldi and others, 2014). Like clustering,

topic models provide a small set of “prototypical” data points; this enables sum-

marization of the overall collection. Unlike clustering, where each sample must

belong to exactly one cluster, topic models support varying grades of member-

ship. Therefore, samples are allowed to smoothly blend from one prototype to

another. Alternatively, topic models can be viewed as a form of constrained di-

mensionality reduction, where factors and loadings are constrained to lie on the

probability simplex (Carbonetto and others, 2021). The sum-to-one constraint

can make the results more interpretable than standard PCA, NMF, or factor

analysis: each sample can be written as a mixture of underlying types, and each

topic is a probability distribution across data dimensions. For example, for mi-

crobiota data, each topic can be interpreted as a sub-community of bacteria and

each sample is a mixture of a few underlying sub-communities.

Like most clustering and dimensionality reduction methods, topic models

come with a hyperparameter, K, that controls the complexity of the resulting fit,

and choosing a good value of K to aid downstream analysis remains a challenge.

Past work has focused on automatic selection of this hyperparameter, typically

by referring to the marginal likelihood of a test set (Wallach and others, 2009;

Kass and Raftery, 1995). In this study, we explore an alternative, a process

we call topic alignment (Figure 1), which is based on describing how models fit

across a range of K relate to one another.

This reframing has appeared in previous literature, though typically in the

context of new models, rather than new algorithms applied to existing models.

For example, a hierarchical extension of topic models (Blei and others, 2003a)

provides a similar multiscale interpretation of topic structure. However, com-

putational challenges have made these models somewhat difficult to extend and

apply, compared to fixed K topic models. In the hierarchical clustering context,

a comparison across choices of K is central to the HOPACH algorithm (Pollard
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Figure 1: How to read a topic alignment. Construction of weights is discussed

in Section 3.1 and paths are defined in Subsection 3.2.2.

and Van Der Laan, 2005), which evaluates cluster stability using a bootstrap

procedure.

Instead of introducing a novel multiscale model, we focus on post-estimation

comparison of an existing ensemble. This is in the spirit of methodology for com-

paring clusterings (Meilă, 2007; Wagner and Wagner, 2007), which introduce

metrics for navigating the space of clustering results. Similarly, a description

of the relationship between models across choices of K is provided by graphical

posterior predictive analysis (Gelman, 2004; Gelman and Shalizi, 2013). A pos-

terior predictive check can highlight the lack of fit at particular choices of K,

in addition to guiding the selection of K. We also note a connection to Tukey’s

process of iterative data structuration (Tukey, 1977; Holmes, 1993; Holmes and

Huber, 2018).

Alignment of models across scales naturally supports a coarse-to-fine analy-

sis, ensuring that subtle patterns can be related to their overall context. First,

this helps navigate the interpretability-expressivity trade-off associated with dif-

ferent choices of K. Models with small K tend to be more interpretable, but

may suppress interesting variation in the data. Conversely, models with large

K are more faithful to the data, but can be overwhelming to the analyst. By

streamlining comparison across K, we get the best of both worlds — topics at

large values of K can be interpreted in context of the coarser ones to which they

relate. Second, topic alignment is still relevant to the challenge of choosing K.

In a way that is made precise in Section 3.3, true topics tend to be more stable

across choices of K, while spurious ones are more transient. Finally, alignment
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can help practitioners discover mis-specifications in topic models. For example,

it is biologically plausible that microbiota data deviate from the topic model

generative mechanism in the following ways:

• Elevated heterogeneity: Topic models assume that all samples are a mix-

ture of a few underlying sub-communities. If samples have more hetero-

geneity than expected — e.g., due to unmodeled external factors — then

topic models may be inappropriate, even for large K.

• Strain switching: There may be strains of a species that compete for the

same ecological niche. If one strain is successful, then the other would

be expected to be absent. This can result in sharp differences in strains

within an otherwise well-defined community structure.

In Section 4, we generate data inspired by these phenomena and apply topic

alignment to them. We describe the degree to which the resulting alignments

reflect underlying heterogeneity or switching. As long as the mis-specification

is not too subtle, topic alignment can suggest specific structure to incorporate

into follow-up analysis.

In the remainder of this paper, we present the following contributions:

• The design of algorithms and diagnostics to support the comparison of

topic models fit across a range of scales K.

• An analysis of the properties of these algorithms and diagnostics, using

simulation experiments across several generative mechanisms.

• An illustration of topic alignment applied to a microbiota data analysis

problem.

• The release of an R package, alto, implementing these methods.

Sections 2 and 3 review relevant background material and present algorithms

and diagnostics for topic alignment, respectively. Subsection 3.4 briefly de-

scribes the alto package and the workflow that it supports. Section 4 presents

a suite of simulation experiments, with an emphasis on exploring model mis-

specification through alignment. Section 5 describes the application of topic

alignment to a data analysis problem associated with the vaginal microbiota.

This is a setting where high-level structure is dominated by a few well-known

species, but where additional, systematic variation is present at finer scale.
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2 Background

We first review topic models. Then, we summarize approaches to compare

probability distributions, which are used in Section 3.

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a flexible way to summarize high-dimensional

count data (Blei and others, 2003b). Suppose that the data are made up of N

samples xi ∈ ND. For example, in text analysis, these are the counts of D

words across N documents1. In the data analysis given in Section 5, these

are the counts of D Amplicon Sequence Variants (ASVs)2 across N samples

collected from the study participants. Let ni =
∑
d xid be the total count of

sample i. Then, LDA supposes that each xi is drawn independently according

to

xi|γi ∼ Mult (ni, Bγi)

γi ∼ Dir (λγ · 1K) ,

where the K columns βk of B ∈ ∆D lie in the D dimensional simplex and are

themselves drawn independently from

βk ∼ Dir (λβ · 1D) .

In this mechanism, γi ∈ ∆K can be interpreted as mixed-membership weights,

with each γik giving the degree to which sample i “belongs” to topic K. Since

each γi can vary continuously through the simplex, the model is more flexible

than a simple clustering model, which would assign each sample to exactly one

of K clusters (i.e., the simplex corners). The three hyperparameters in this

model are the number of topics K and the prior parameters λγ , λβ . Large λγ

and λβ result in Dirichlet distributions that place more mass near the uniform

distribution. Small λγ and λβ place more mass on edges and corners of the

simplex, resulting in sparser γi or βk, respectively.

In the case of microbiota analysis, each βk corresponds to a pattern of ASV

abundance. Each sample i is a mixture of these underlying communities, with

mixing weights γi. Note that, though the topics are amenable to composi-

tional interpretations — the βk lie on the simplex — the original count data are

1A table of all notation is given in the supplementary materials.
2This is the number of times specific regions of the 16S rRNA gene have been sequenced –

see Callahan and others (2017) for details of 16S sequencing technology.

5



modeled directly, rather than initially transformed to centered-log-ratios, for ex-

ample. This makes it possible to account for differential uncertainty in samples

with high and low sequencing depth and decreasing the amount of processing

that takes places between raw data and final interpretation, reducing the risk

for analysis errors.

2.2 Simplex Distances and Optimal Transport

We next review methods for comparing probability distributions. These are

useful in the LDA context, because the parameters γi and βk all lie on the

probability simplex.

We first consider distances on the simplex. Let p, q ∈ ∆D (i.e., two discrete

probability distributions over D categories). The Jensen-Shannon Divergence

(JSD) between them is defined as

JSD (p, q) :=
1

2

[
KL

(
p||1

2
(p+ q)

)
+ KL

(
q||1

2
(p+ q)

)]
,

where KL (a||b) :=
∑
i ai log

(
ai
bi

)
is the Kullback-Liebler divergence between a

and b. The JSD can be viewed as a symmetrized version of the Kullback-Liebler

divergence, allowing it to serve as a distance measure. Intuitively, for p and q

to have low JSD to one another, samples from either distribution should have

high probability under the averaged distribution 1
2 (p+ q). Alternatively, the

cosine similarity cossim (p, q) := pT q
‖p‖2‖q‖2 may be used. The numerator here

is large when both p and q place high mass on the same coordinates, and the

denominator is smallest when both p and q are far from uniform.

Both the JSD and cosine similarity treat all coordinates of ∆D symmet-

rically. They are also only defined when p and q have the same number of

categories D. Alternatively, we may relax these constraints, requiring instead

only a notion of pairwise similarity between coordinates in p and q. This is

formalized in optimal transport, which assigns costs for “transporting mass”

between pairs of coordinates. Represent the costs of transporting mass between

the D coordinates of p and the D′ coordinates of q by a matrix C ∈ RD×D
′

+ .

Then, the optimal transport between p and q is the coupling Π minimizing

min
Π∈U(p,q)

〈C,Π〉

U (p, q) :={Π ∈ RD×D
′

+ : Π1D′ = p and ΠT1D = q},
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where 〈A,B〉 is shorthand for the Frobenius inner product, tr
(
ATB

)
. The

smaller the transport cost 〈C,Π〉, the more similar the distributions p and q,

with respect to the costs induced by C.

A useful analogy is due to Kantorovich (Peyré and others, 2019). Imagine

there are D mines and D′ factories. An amount pi of raw material is produced

by mine i; on the other hand, factory j requires qj total input. Suppose C

captures the transport costs between all pairs of mines i and factories j. Then,

the optimal transport plan Π specifies how much material produced by mine i

should be shipped to factory j.

3 Methods

In this section, we set up the problem of topic alignment, provide associated

algorithms, and discuss an R package implementation. Although more general

treatments are possible, we focus on the case that the topics are derived from

a sequence of models with increasing K. Alignment across a sequence of mod-

els supports multiscale analysis: topics from models with large K distinguish

between subtle variations in samples, and an alignment shows how these top-

ics are related to overview topics derived at small K. In Section 7, we discuss

how the methods proposed here could be generalized and applied for other pur-

poses than multiscale analysis. For example, topic alignment could be used to

compare topics identified in different environment (i.e., datasets) or across dif-

ferent modalities (i.e., different types of data have been collected on the same

samples).

3.1 Topic Alignment

Suppose we have estimated topics across an ensemble of LDA models M. The

topic alignment problem consists of constructing a weighted graph whose nodes

are topics from across models and whose edge weights reflect the similarity

between the topics. Formally, let V be the set of topics across all models inM.

We suppose the investigator has specified pairs e = (v, v′) ∈ E, where, v, v′ ∈ V
and E is the set of edges in the topic alignment graph, of topics of interest to

compare. Then, an alignment should provide weights w : E → R+ that are

large when v and v′ have similar estimated parameters, and low otherwise.

The graph (V,E,w) contains the result of the topic alignment. Let k (v)

denote the topic associated with node v ∈ V , and suppose it lies in model
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m ∈ M. Write γ (v) :=
(
γmik(v)

)
∈ RN+ for the vector of mixed memberships

associated with this topic. Similarly, set β (v) := βmk(v) ∈ ∆D.

3.2 Algorithms

3.2.1 Weight estimation

We propose two methods for estimating weights w (e), one using sample com-

position (γi) and another using topic composition (βk). We call the approaches

product alignment and transport alignment, respectively.

In product alignment, we set w (e) = γ (v)
T
γ (v′). Intuitively, if two topics

have a similar pattern of γik across samples i, then they are given a high weight

(Figure 2a). Further, topics that have small γik across all samples are given

lower weight, regardless of their similarity.

In transport alignment, we compute w (e) by solving a collection of optimal

transport problems (Figure 2b). Consider two subsets Vp, Vq ⊂ V with Vp ∩
Vq = ∅; we take these two sets to be all topics v from models m and m′. Let

p =
(
γ (v)

T
1N

)
v∈Vp

and q =
(
γ (v)

T
1N

)
v∈Vq

. These summarize the “mass”

of each topic across all samples, within each of the two sets. For example, these

will both sum to N if the Vp and Vq equal to the sets of topics from two models,

since each γi lies in the simplex. Define the cost of transporting mass from node

v to v′ by C (v, v′) := JSD (β (v) , β (v′)). This ensures that weights are lower

between topics with very different distributions, regardless of sample weights

γik. Arrange these costs into a matrix C of size |Vp| × |Vq|. The weight matrix

W between pairs of topics in Vp and Vq is the R|Vp|×|Vq|
+ matrix formed by solving

the transport problem

min
W∈U(p,q)

〈C,W 〉

U (p, q) :={W ∈ R|Vp|×|Vq|
+ : W1|Vq| = p and WT1|Vp| = q}.

We note that in the case that Vp and Vq contain topics from models m

and m + 1, it is natural to construct a directed graph, with edges from topics

in model m to those in m + 1. In this case, we refer to the topic subsets

as Vm, Vm+1, respectively. For a directed graph, it is possible to normalize

weights according to either the total inflow or outflow for each node. We will

use these normalized weights in the computations of the topic orderings given

in Supplementary Section 1 and in the computations of some of the diagnostic

scores given in Section 3.3. Specifically, we normalize weights for edges flowing
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out of v according to wout (v, v′) =
w(v,v′)∑

ṽ:v→ṽ w(v,ṽ) . Similarly, normalization for

edges flowing into v is defined by win (v′, v) =
w(v′,v)∑

ṽ:ṽ→v w(ṽ,v) .

Figure 3 provides visualizations of product and transport alignments on

simulated data. Note that topics are not returned by the LDA fit in a specific

order. Consequently, topics connected by high weights across models may have

different index k within their respective model. For visualization purposes, we

order topics within each model such that similar topics are close to each other.

The ordering procedure is described in Supplementary Section 1.

3.2.2 Paths

Topic reordering places topics with high alignment weights next to one another,

giving the appearance of chains of mutually similar topics. To highlight this

phenomenon, we partition the alignment graph into a collection of paths. The

partition is grown iteratively, adding topics to existing subsets based on align-

ment weights.

Let Path (v) be the path ID associated with topic v, and let M be the

model with the largest number of topics. For each topic v ∈ VM , we initialize

Path (v) = k (v). Suppose Path (v) is known for all v ∈ Vm+1. Then, the path

membership Path (v) of a node v ∈ Vm is set to Path (v∗), where

v∗ := arg max
v′∈V(m+1):M

(wout (v, v′) + win (v, v′)),

is the topic from one of the levels m + 1, . . . ,M that shares the highest total

normalized weight with v.

3.3 Diagnostics

We next propose three diagnostic measures that compactly describe the results

of a topic alignment. These statistics reflect the added value of introducing each

additional topic, the specificity of ancestor-descendant ties, and the coherence

of topics across K. In addition to summarizing the alignment, these statistics

can also serve to diagnose model mis-specification in the original fits.

3.3.1 Number of paths

Paths found by the iteration of Subsection 3.2.2 connect the most similar topics

across resolutions. Spurious topics introduced at high resolution tend to be dif-

ferent from one another, limiting their ability to maintain a path. Instead, they
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Figure 2: Top panels (a-b) illustrate topic alignment for product (a) and trans-

port (b) alignments. The bottom panels (a-c) illustrate the diagnostic scores

characterizing the alignment. (a) Each vertical column corresponds to a topic.

Each circle encodes weights γiv for a single sample i. The width of the links

between circles encodes the product γivγiv′ . Note that this product is large only

if both γiv and γiv′ are large. The product alignment between two topics is high

if the sum of products across all N is large. (b) Each vertical bar describes a

single topic v. The heights of bars provide the weights
∑
i γiv for each topic v;

their locations encode βv ∈ ∆D. Green and purple topics are estimated by LDA

models with K = 2 and 3 topics, respectively. In transport alignment, the mass

from the green bars is redistributed to the purple bars and alignment weights

are derived from the associated optimal transport plan. (c) To assign a path

to a topic v, the edges e∗ (v) from which topics v derive most of their weight

are identified. (d) A topic has a high coherence score if all normalized weights

(win and wout) between this topic and topics on the same path are large. (e)

A topic has a high refinement score if the downstream alignment structure is

“tree-like”, i.e. if all descendant topics recognize v as their main parent. Note

that a topic v (highlighted by a black outline here) may have a low coherence

score but a high refinement score.
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connect to more stable paths. Consequently, counting the number of paths at a

given resolution provides an indication of the number of true topics. Formally,

the number of paths for a model m is the size of the set {Path (v) : v ∈ Vm}
In simulations below, we find that, when a topic model is appropriate, the

true value K is captured by a plateau in the number of paths (Figure 3a).

Hence, this metric can be used analogously to the identification of an “elbow”

from a scree plot. Further, consistently slow growth in the number of paths

identified may indicate departures from the assumed LDA model. Examples of

both phenomena are provided in Section 4. The number of paths is a property

of a model within the alignment. In contrast, the scores introduced below focus

on individual topics.

3.3.2 Topic Coherence

We call a topic coherent if it is found in models fitted across a range of values of

K. When coherent topics are recovered across multiple levels of an alignment,

there is more evidence that the discovered structure is real, because it is not

sensitive to the particular K of the model used.

Topic coherence is defined in the context of paths. It measures the similarity

between a given topic v and the other topics on the same path P (v) = {v′ :

Path (v′) = Path (v)}. It is defined as

c(v) =
1

|P (v) |
∑

v′∈P(v)

min (win (v, v′) , wout (v, v′)) .

Our simulations illustrate how this score can be used to identify “good” values of

K in LDA as well as detect departures from assumed LDA structure. Note that

coherence focuses solely on the path containing a topic. We introduce another

measure, topic refinement, to reflect the richer branching pattern downstream

of a topic.

3.3.3 Topic Refinement

A topic identified at a small value of K may have low coherence but still be a

useful topic if it is the sole ancestor of topics in subsequent models. We expect

true topics and compromises between true topics to have this property. We

introduce the refinement score to identify such topics.

Recall that for a node v′, win(v, v′) measures the extent to which mass at

v′ flows from parent node v. For each v, the refinement score is a weighted
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average of win(v, v′) over all its children v′. More formally, collect topics into

levels V1, . . . , VM . We define the refinement score of node v in level m as

r (v) =
|Vm|
M −m

M∑
m′=m+1

∑
v′
m′∈Vm′

wout (v, v′m′)win (v, v′m′) . (1)

To better understand this score, we can establish its properties in some sim-

ple cases (proofs given in the supplementary materials). Continuing to assume

that node v is in level m,

• The refinement score is maximized (r(v) = |Vm|) if and only if w(v, v′m′) >

0 implies w(u, v′m′) = 0 for any u ∈ Vm \ {v}. This condition means that

every descendant of v has v as its sole parent in level m.

• The refinement score is minimized (r(v) → 0) when all of the descen-

dants of v descend primarily from other nodes in level m (i.e., the score is

smallest for nodes that don’t have any descendants that recognize them

as parents at all). Indeed, suppose that for every v′ ∈ Vm′ , we have

fixed weights w(v, v′). Then r(v) → 0 when for each w s.t. w(v, v′) > 0,

w(u, v′)→∞ for some u ∈ Vm \ {v}.

• The refinement score is defined such that r(v) = 1 if all the weights in the

graph are equal, which indicates an absence of topic structure in the data.

3.3.4 Comparing diagnostics

The diagnostics measure different properties of an alignment. Both low coher-

ence / high refinement and low refinement / high coherence combinations are

possible, although in the examples below the diagnostics tend to track each

other. We would expect the refinement score to be high but the coherence score

to be low in the case that the alignment plot has a branching structure. On the

other hand, the refinement score can be small for a topic with high coherence if

that topic doesn’t have many descendants. We discuss this further and provide

examples in the Supplementary Section 4.

Overall, the coherence score describes how “good” or “trustworthy” a topic

is; topics with high coherence scores appear consistently across levels. This is

true even if the refinement score is low — in that case, the refinement score is

likely to be low simply because the topic is present at low frequency. On the

other hand, the combination of high refinement and low coherence score suggests

that the topic is a mixture of several high-coherence topics. These topics can still
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be useful to the analyst, as they simply represent a coarser-grained summary of

the data.

3.4 R package

We have released an R package, alto, to support al ignment of topics from LDA

models. The package provides functions for

• Fitting a set of topic models.

• Aligning topics across a collection of models, identifying paths, and com-

puting coherence and refinement measures from the alignment.

• Visualizing the resulting alignment object.

The design emphasizes the modularity of the alignment workflow, and separate

functions are given for each of the steps above. To illustrate, we include an

example use of the package on random multinomial data.

library(purrr)

library(alto)

# simulate data and fit models

x <- rmultinom(20, 5000, rep(0.1, 500))

lda_params <- setNames(map(1:10, ~ list(k = .)), 1:10)

lda_models <- run_lda_models(x, lda_params)

# perform alignment and plot

result <- align_topics(lda_models)

plot(result)

Note that result is an S4 class (class alignment) with its own plot method.

This class is associated with accessor functions for extracting the underlying

model parameters (models()), alignment weights (weights()), and topic-level

diagnostics (topics()).

In addition to the product and transport methods that are currently imple-

mented, the package allows users to pass in arbitrary functions for computing

weights between sets of topics. Further, in addition to computing alignments

across a sequence of increasing K, the package implements topics comparison

and weight construction over arbitrary topic graphs. Examples of these func-

tions, as well as all data analysis and simulations described here, are available
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as package vignettes. The package homepage is available at lasy.github.io/

alto/ and its source code can be found at github.com/lasy/alto.

4 Simulations

In this section, we study the extent to which learned topic alignments and

their associated diagnostics distinguish between types of variation that can arise

in count data. We apply methods in a few controlled settings, verifying that

derived interpretations are consistent with the known generative mechanism.

We investigate alignment when simulating from true LDA models as well as

under certain types of mis-specification. The latter cases inform the extent to

which alignment can inform model assessment.

4.1 Latent Dirichlet Allocation

If the data were in fact simulated from an LDA model with K topics, then what

will the associated topic alignment and diagnostics look like?

We simulate N = 250 samples xi ∈ ND from an LDA model with K = 5

true topics and D = 1000. For mixed memberships, we draw γi ∼ Dir (0.5 · 1K),

while topics are assumed sparser, with βk ∼ Dir (0.1 · 1D). These parameters

have been chosen to maintain simplicity while exhibiting both high-dimensionality

in xi and sparse structure in γi and βk. At this scale, alignments can be made

interactively: computation of product and transport alignments each takes 5 -

6 seconds on a laptop with a 3.1 GHz Intel Core i5 processor and 8GB memory

(in contrast, to fit LDA models with K ∈ {2, . . . , 10} requires 352 seconds). We

provide the true λγ and λβ hyperparameters. In practice, these would be cho-

sen quantitatively according to marginal likelihood or qualitatively to enforce

a desired level of sparsity. However, providing the true hyperparameters allows

us to concentrate on the properties of alignment in an ideal case.

With this setup, we simulate 200 datasets and fit models withK ∈ {2, . . . , 10}
topics. Each set of models is aligned using both the product and transport meth-

ods. The product and transport alignments from a randomly chosen replicate

are shown in Figure 3. The primary distinguishing feature between product

and transport alignments is the sparsity in weights estimated using the trans-

port approach. Both alignments provide hints that K = 5:

• The number of paths (i.e. number of distinct colors) remains 5 for K > 5.
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Figure 3: Alignments for data simulated from LDA with K = 5. Parts (a) and

(c) are estimated using product and transport alignment, respectively. Rectan-

gles correspond to topics, and their sizes give the mass
∑
i γik. Vertical sections

give fitted models. The width of links encodes the weights w (e). Topics and

edges are colored to show paths. Parts (b) and (d) give βkd, colored in according

to (a) and (c), respectively. Each column encodes a topic, each row is a dimen-

sion, and circle size is proportional to βkd. Sets of topics from one model are

grouped into panels. Circles with βkd < 0.001 are omitted. Dimensions d are

sorted according to Distinctiveness (d) := minl 6=k βkd log βkd

βld
+ βld − βkd, as in

(Dey and others, 2017), but with k, l varying over topics from multiple models.

Only the 25 most distinctive dimensions are displayed.
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• For K ≤ 5, most mass is conserved along a few major paths. For K >

5, this structure fragments and each topic tends to align with multiple

descendant topics.

Supplemental Figures 4 - 9 provide ten additional replicates, along with

ten replicates of a simulation from a null model in which the counts are drawn

from independent multinomials whose means come from a Dir(1D) distribution.

Each of the three diagnostics are shown for each of the simulated datasets. Clear

differences are visible across all diagnostics for the data generated under the null

vs. topic model. In the topic model, the number of paths generally plateaus

at 5. In the null model, the number of paths continues to increase as we add

more topics. The coherence scores are all around 0 and the refinement scores

are all around 1 in the null model. In the topic model, topics with low coherence

and low refinement scores emerge for K > 5. These topics are likely spurious.

The other topics (matching the true topics) have high coherence and refinement

scores.

We next present a more systematic description of the diagnostics across all

200 simulation replicates. Figure 4a counts the number of paths at each K. Up

to K = 5, and for most simulation runs, each new topic created a new path.

For K = 5, 6, nearly all alignments estimated that 5 paths were present, though

for larger K, additional topics were sometimes added to this subset. Transport

alignment tended to more frequently overestimate the number of paths. For

example, transport alignment occasionally found up to 8 paths when K = 9,

while product alignment rarely estimated more than 5 topics.

Figures 4b-c show topic-wise coherence and refinement scores as a function of

K in the alignment. The lower envelope of the distributions for both coherence

and refinement scores show an abrupt drop-off for K > 5 across both alignments,

reflecting the low coherence and refinement of newly estimated topics with less

similarity to the K = 5 true topics. For K < 5, refinement scores remain high

as topics in these models are parents of true topics.

Overall, three practical rules of thumb are (1) a plateau in the number of

paths indicates that the true number of topics has been reached, (2) a rapid

drop-off in coherence or refinement scores indicates low-dimensional structure,

and (3) topics with high coherence or refinement scores are more likely to reflect

true topic structure.

To evaluate the extent to which these practical rules guide selection of K,

we have repeated these simulations with datasets of increasing sample size. We
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observe that the probability of choosing the true K increases with the sample

size (Supplementary Figure 10).

These simulations are a sanity check — in the case that data are exactly

generated by an LDA model with a known K, then alignment can help identify

it. However, a number of methods are available for selecting K when models

are correctly specified, and real data are unlikely to so perfectly correspond

to a proposed generative mechanism. In the spirit of “all models are wrong,

but some are useful,” we consider, in the next two sections, scenarios where an

LDA model is fit to data that are not simulated from the LDA mechanism, but

where alignment can nonetheless inform an understanding of the essential latent

structure.

4.2 LDA with background variation

To begin describing properties of alignment in this approximate regime, we

simulate data from the case where sample compositions exhibit an extra level of

heterogeneity not present in LDA. We suppose that most, but not all, variation

in latent sample compositions lies on a K-dimensional subspace spanned by K

topics B. The closer the compositions lie to this subspace, the closer the LDA

model is to being correct. Specifically, we simulate from

xi|B, γi, νi ∼ Mult (ni, αBγi + (1− α) νi)

νi ∼ Dir (λν)

γi ∼ Dir (λγ)

βk ∼ Dir (λβ) .

This generative mechanism is identical to that of LDA, except that instead of

being centered around Bγi, sample i is centered around αBγi + (1− α) νi for a

νi ∈ ∆D drawn without reference to the K topics in B. As before, we simulate

with N = 250, D = 1000,K = 5. For each α ∈ {0, 0.05, . . . , 1}, we generate 50

datasets and then fit and align topic models with K ∈ {1, . . . , 10}.
Randomly chosen alignments for a range of α are given in Supplementary

Figure 2. For large α, most mass is concentrated in 5 core paths, and there is

limited exchange from one topic to another. For small α, mass is more evenly

distributed across branches and a high-degree of exchange is present.

The number of paths across K for each α is shown Figure 4c. At α = 0

(data simulated from random multinomials), there is no plateau in the number
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of paths. As α increases, a plateau at K = 5 emerges and becomes increasingly

well-defined. The definition of paths appears effective at distinguishing low-

from high-rank sample compositions — a gradual increase in the number of

paths, without any visible plateau, would suggest that an LDA model is missing

true sample-to-sample variation, even with large choices of K.

The distribution of coherence scores also shows differences depending on α

(Figure 4e). For large α (i.e., generative mechanisms closer to LDA), the upper

envelope of coherence scores rapidly increases up to K = 5. For K > 5, the

lower envelope rapidly drops off while the upper envelope slightly decays. For

small α, there is no local maximum in the distribution of coherence scores and

all topics have small scores. This suggests that, when an underlying LDA model

is more approximately correct, the associated alignment includes more coherent

topics with a peak coherence around the true latent dimensionality.

Figure 4f shows the analogous display for refinement. In the small α case

(no true topics), all topics have essentially the same refinement score for all K,

and the score is as expected if there is no relationship among the topics. In

contrast, in the more approximately low rank, large α case, a larger spread in

scores is visible. In that case, topics with high refinement scores for K ≥ 5

have high similarity with the true topics, and the K = 5 transition is marked

by a drop-off in the lower envelope of refinement scores. Further, reading each

panel from bottom to top (increasing topic structure), we find that the upper

envelope of refinement scores noticeably increases.

Altogether, these diagnostics suggest that alignment can detect departures

from the underlying topic model assumption that samples are concentrated on

a K-dimensional topic simplex, across a range of candidate K. Paths with low

coherence can be a warning flag. Further, low refinement scores and the absence

of any plateau in the number of paths may suggest that observations exhibit

higher sample-to-sample variation than an LDA model alone may capture.

Since it is possible to simulate new data from each fitted LDA model, these

guidelines can be formalized into a graphical posterior predictive check. Poste-

rior predictive samples can be drawn from the model with the largest K, which

has the most flexibility. Aligning topic models fit to these data could provide a

reference distribution for each of the diagnostics, and comparing the observed

measures with this reference can give evidence for or against model fit.
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Figure 4: Diagnostic measures when background variation is and is not present.

a) The number of estimated paths across simulations from an LDA model with

K = 5. The circle size encodes number of replicates for which that number of

paths was identified. The product method tends to be more conservative, and

is less prone to overestimate the number of topics, compared to the transport

method. b) Coherence and c) refinement scores for topics fitted to data from

an LDA model. Points represent estimated topics from across replicate. Color

encodes similarity to a true underlying topic, which would be unknown in reality.

d) The estimated number of paths varies as a function of background variation

α. The closer the data are to being drawnfrom an LDA model, the faster

the initial increase in the number of estimated paths and the more definitive

the plateau. e) For small α, coherence drops-off starting at K = 1, with no

visible increases. For larger α, a subset of topics has elevated coherence and

the largest average topic coherence occurs at the true latent dimensionality. f)

Refinement scores are higher and exhibit larger range when the LDA model is

approximately correct. The range and trend refinement scores can be used to

distinguish between datasets that have more or less unmodeled heterogeneity.
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4.3 Strain switching

Our final simulation studies whether alignment can detect mis-specifications

in topic modeling due to highly correlated topics. Our setup is motivated by

the strain switching phenomenon observed in some microbiota environments

(Jeganathan and Holmes, 2021). In this situation, there are strains that can

be exchanged between what are otherwise similar communities. These strains

can be thought of as being functionally equivalent, competing for a niche within

an ecosystem. The consequence is that two nearly identical communities may

be present in the ecosystem, but with systematic differences for some strains.

From a topic modeling perspective, these communities have anti-correlated topic

memberships – only one of the competing strains can be present in a sample at

a time.

The existence of these communities can be detected by comparing topics

estimated at different scales. At coarse scale, two communities may be indistin-

guishable from one another, swamped by larger variations in species signatures

across the ecosystem. At finer scale, the subsets of strains that distinguish them

may become apparent after close inspection of the estimated topics.

Our goal is to study the extent to which alignment can support this mul-

tiscale analysis. Our simulation mechanism first draws γi and βk as in the

simulations above. Instead of directly using βk, however, perturbed versions

β̃rk are generated for r ≤ Rk, a pre-specified number of perturbed replicates

Rk. The perturbation mechanism is given in Supplementary Algorithm 1. The

resulting β̃rk and β̃r
′

k differ only on a subset of S coordinates and can be viewed

as functionally equivalent sub-communities. Given perturbed topics, sample i

is drawn by first randomly selecting one perturbed version from each of the K

topics,

βik ∼ Unif
({
β̃1
k, . . . , β̃

Rk

k

})
binding the results into a K column matrix Bi, and then drawing

xi ∼ Mult (ni, Biγi)

as in standard LDA.

We set K = 5 and (R1, . . . , R5) = (2, 2, 1, 1, 1). We draw N = 250 samples

with dimension D = 1000. We use S = 230; results with varying S are given in

the supplement. In the microbiota interpretation, our samples include counts of

1000 species each, and 5 underlying community types are present. Two versions

of the first two types are present, differing on a subset of S competing species.
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Figure 5: Results from the strain switching simulation. a) An alignment from

one replicate with S = 230. Only the 200 most distinctive dimensions are dis-

played. The purple-dark blue and green-light blue pairs of branches correspond

to two perturbed versions of the same underlying community, as suggested by b)

the similar columns of βkd for K = 6, 7. c) Cosine similarities between known

and estimated topics across increasingly finer-scale models m. Rows 1-2 and

3-4 corresponding to perturbed versions of two underlying communities. For

K = 5, the estimated topics do not distinguish between versions. At K = 6,

rows 3 and 4 are slightly distinguished from one another, and at K = 7, both

sets of perturbed topics are detected.
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The resulting alignment is given in Figures 5a-b. The learned topics for

K = 5 to 7 are given in the right panel. We note that, at K = 6, the purple

and blue topics have similar weights across many, but not all species. Likewise,

at K = 7, the brown-orange and brown-green topic signatures are similar. The

accompanying flow diagram shows that, in both cases, the pairs of similar topics

had been merged when K = 5, suggesting that the model begins to detect

perturbed versions of the same topics once K is increased.

To attribute these differences to the known perturbation mechanism, we

compute the cosine similarity between estimated and true topics. Figure 5c

shows the cosine similarity ξmkk′ := cossim
(
βk, β̂

m
k′

)
for models m with 5 to 7

topics. Each row corresponds to a true topic; rows 1-2 and 3-4 are perturbed

versions of two underlying sub-communities, respectively. For K = 5, the pat-

terns of cosine similarities across rows 1-2 and 3-4 are similar, suggesting that

the estimated topics are not sensitive to strain switching. However, for K = 6

and 7, new topics emerge that distinguish between the pairs of nearly equiva-

lent sub-communities. The off-diagonal elements for the two squares indicates

that the newly estimated topics remain similar to both versions of the under-

lying mechanism. However, since only a subset of species is perturbed in each

version, some remaining similarity is to be expected.

5 Data Analysis

We applied topic alignment to vaginal microbiota composition data; the results

are given in Figure 6. The data are ASV counts from longitudinal samples

collected throughout pregnancy in 135 individuals (Callahan and others, 2017).

In most individuals, the vaginal microbiota have low heterogeneity compared

to other human microbiotas: one of four Lactobacillus species (crispatus, iners,

gasserii or jensenii) completely dominates the flora. However, some individuals

may present “dysbiosis,” defined by a high compositional diversity and the ab-

sence of Lactobacillus dominance. Topic analysis offers an opportunity to iden-

tify sub-communities that may co-exist within these diverse non-Lactobacillus

communities.

Applying topic alignment to these data, we observe that the number of

paths (Figure 6a) shows a small plateau around K = 12 with both methods

(product and transport). As in the simulations, the number of paths are lower

and the plateau is stronger when paths are identified using product rather than
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transport alignment. A small plateau is likely indicative that the data generation

process does not strictly follow the LDA model assumption. However, most of

the identified topics around K = 12 are coherent across K (Figure 6b-c). The

distribution of refinement scores (Figure 6d) shows, for both alignment methods,

the emergence of low refinement score topics from K = 14. This supports the

idea that a higher number of topics is likely over-fitting the data. Further, the

median refinement score is highest for K = 7 when using the product method.

This suggests that topics identified at that resolution are a mixture of true,

higher resolution topics.

In summary, a biologist may interpret this analysis by stating that topic

models with K = 12 provides the best summary of the sub-communities found

in the vaginal microbiota. Among those 12 sub-communities, two (topic 11

and 12, with low coherence scores) might be “spurious” in the sense that they

may not represent well-defined sub-communities but instead capture a set of

bacteria that may be sample-specific (background noise). The analyst could also

choose to model their data at a coarser resolution by setting K = 7. At that

resolution, they would identify four coherent Lactobacillus-dominated topics and

three non-Lactobacillus dominated topics. Among these three topics, one topic

has a high coherence score and is composed of specific species of Gardnerella

and Atopobium. The other two topics, with lower coherence scores but high

refinement scores, identify two distinct mixtures of sub-communities which are

revealed at higher resolution.

These results are useful from a biological perspective because they provide

a more detailed, and yet still succinct, description of the vaginal microbiota

structure. Historically, vaginal microbiota data have been clustered into five

community state types (CST), four of them corresponding to one of the four

most prevalent Lactobacillus species, and the fifth one being “everything else.”

Our analysis is consistent with this interpretation, but provides a more precise

view into the structure of the fifth state.

6 Comparison with alternatives

In this section, we present and discuss analyses comparing topic alignment with

alternative methods (perplexity) or models (hierarchical LDA).
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Figure 6: (a) Number of paths for each number of estimated topics in the

LDA model. Number of paths identified by the transport method are shown in

blue, those identified by the product method are shown in red. (b-c) Transport

alignment of topics across K where topics are colored by paths (b) or by their

coherence score (b). (d) Small colored dots show the refinement score of each

topic across K for both alignment method. Colors match path colors in panel

(b). The gray ribbon shows the envelope of the coherence scores (min to max),

while the thick black lines shows the coherence scores median value. (e) Topic

composition (dot size shows estimated β) for K ∈ 3, 7, 12, 18. Topics (x-axis)

are colored by path (see panel b). Species (y-axis) are ordered by the topic with

the highest β for that species in model K = 18.
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6.1 Perplexity

Here, we evaluate train and test perplexity for each fitted model across simula-

tions. Perplexity is a measure of the probability of test samples under a fitted

model (see supplementary equation 4.1). For each simulation setup, we compute

perplexity both on the data used to train the model and an independent sample

with the same topics βk. Supplementary Figure 11 shows that, when the data

are generated via LDA, an “elbow” in train and test perplexities highlights the

correct choice of K = 5. In the case of data generated with background noise

(Supplementary Figure 12), a subtle drop-off around K = 5 is visible at small

α and grows more apparent and concentrated around K = 5 as the noise de-

creases. For strain switching (Supplementary Figure 13), an elbow at K = 5 is

visible, but even for large S, no indication of switching emerges. In each case,

test perplexity never increases after the true K = 5, but the location of the

“elbow” nonetheless suggests the correct K, in most cases.

While perplexity can be used to inform the selection of the number of topics,

alignment can provide relevant, complementary information. For example, per-

plexity is defined on subsets of samples, and so, unlike coherence or refinement,

it cannot be used to evaluate the quality of individual topics. Further, in the

case that the optimal perplexity appears at a large K, it can still be worthwhile

to use topics at a smaller K to guide interpretation of aligned topics at the

optimal, larger K. Perplexity alone does not support such a details-on-demand

analysis. Finally, though subtle differences in perplexity curves for true LDA

vs. mis-specified models are apparent (e.g., subtle decreases in strain-switching

perplexity after K = 5), variations across types of mis-specification are more

clearly evident through model alignment.

6.2 Hierarchical LDA (hLDA)

In this section, we contrast the proposed topic alignment with hierarchichal

LDA (Blei and others, 2003a). While topic alignment visualizations are sim-

ilar to visualizations of hierarchical structures, it is important to note that

topic alignment is not a hierarchical method. Topic alignment relies on differ-

ent assumptions and fulfills a different purpose than hierarchical topic models

(hLDA). Applying these methods on the same datasets leads to different results,

interpretations, and conclusions.

First, hLDA assumes that topics follow a strict tree-like hierarchical struc-

ture: child-topics have only one parent. In contrast, the alignment structure is
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not tree-like and topics at higher resolution may be connected to several topics

at lower resolution. Second, in the hLDA framework, samples belong to a single

path in the hierarchy; they can only be composed of topics that are part of

the same branch. In contrast, topic alignment only describes relationships be-

tween topics at different resolutions. Within a resolution, samples are described

as mixture of topics. Third, because hLDA is a more complex model, it has

two additional hyperparameters (the depth, and the concentration parameter

for introducing new topics) compared to LDA. Consequently, deploying hLDA

on datasets requires additional effort to identify optimal values for these pa-

rameters. Finally, in hLDA, we can interpret child-topics as sub-topics, and

the hierarchical structure as a topic taxonomy. For example, in the context of

analysing a magazines corpus, football, tennis, and climbing could be sub-topics

of a sport topic. Specific terms characterize these sub-topics (e.g., “harness”

for climbing, or “racket” for tennis), while the sport parent topic might be

characterized by terms such as “competition,” “training,” or “fitness” which we

expect to find in documents related to either football, climbing, or tennis. Topic

alignment may also lead to a similar interpretation of topic relationships, but

exclusively for topics with high refinement scores.

Topic alignment is a post-estimation method aimed to guide scientists in

their exploratory analyses when modeling their data with topic models. There

are no assumptions regarding the relationships between topics at different res-

olutions. These relationships and the diagnostic scores provide information to

users for interpreting their data. This is especially useful if the data genera-

tion process does not strictly follow the LDA assumptions and when perplexity

curves do not show a clear elbow.

Importantly, for microbiota structure analyses, the hLDA assumptions are

not in agreement with observed data and current understanding of the microbial

biology. Even if bacterial sub-communities were organized hierarchically (e.g.,

because of strain switching) we would still expect sub-communities from differ-

ent branches of the hierarchy to co-exist within a given ecosystem (i.e., within

a sample). This results in more complex interpretations; Supplementary Figure

11 demonstrates how hLDA introduces a degree of redundancy to account for

mixtures across branches (see Supplementary Figure 11).

Finally, current implementations of hLDA (Minchul Lee, Douglas Fenster-

macher, Jonathan Schneider) are not well suited for analyses of microbiota com-

position for two practical reasons. First, they require samples to be provided in

a corpus format, as opposed to a matrix of counts. Given current library depths,
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transforming ASV counts into text files leads to large files (7+ GB). Second,

the time required to fit a single hLDA model is larger than to fit LDA models

at multiple resolutions and aligning the topics. For example, fitting hLDA on a

subset of the vaginal microbiota data takes just under a minute. In comparison,

it takes approximately 20-25 seconds to fit 15 LDA models and perform the

topic alignment on the same dataset.

7 Discussion

We have introduced techniques for aligning topics across an ensemble of topic

models. The resulting estimates provide a multiscale view of count data, show-

ing how topics from large and small K models compare and contrast with one

another. We framed the alignment problem as the construction of the appro-

priate weighted graph whose nodes represent topics and whose edges encode

topic similarity. We provided algorithms for estimating weights based on either

the inner product or the optimal transport between fitted model parameters.

Based on these alignment weights, we proposed diagnostics describing (1) the

extent to which any given topic persists across a range of K (coherence score)

and (2) the definitiveness with which finely-resolved topics emerge from coarser

ones (refinement score). We studied the properties of the proposed methods

through a series of simulations, emphasizing the potential for alignment to de-

tect biologically plausible departures from the LDA generative mechanism. We

also applied the overall workflow to a vaginal microbiota dataset and recovered

both known, high-level CSTs, and novel finer-grained sub-community structure.

We note several limitations and opportunities for future study. We have

not provided any theoretical guarantees about the estimated alignment weights

or diagnostics. In order to make our approach applicable to the ensembles of

fitted LDA models that are most frequent in practice, we have deliberately

avoided proposing an overarching multiscale model. Requiring a new model

would increase the burden for adoption – it is easier to compute post-estimation

statistics within a familiar workflow. Nonetheless, though beyond our scope,

it would be worthwhile to understand the behavior of alignment weights or

diagnostics in such a multiscale setting where model parameters are assumed to

be drawn from a plausible distribution.

Further, we have not incorporated any interactive visualization principles to

streamline the analysis of the final alignment data structure. The static views
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provided by our package describe a single aspect of alignment at a time, showing

the alignment weights, the estimated model parameters, and diagnostics in iso-

lation from one another. It would be useful to link these views interactively. For

example, the “top” species associated along each branch could be highlighted

interactively, or the species whose distributions change the most from one topic

to the next. Also absent from our views are any visualizations of how individual

samples relate to the topic alignment overall.

Finally, we note that, though we have focused on the case of increasing K,

the principle of computing summaries that characterize an ensemble of models

is more generally applicable. For example, the choice of hyperparameters λγ , λβ

controls the sparsity of the posterior mixed membership and topic estimates.

A view of which estimates are most strongly influenced by these hyperparam-

eters would be informative. Further, in the data integration context, it may

be simpler to relate separate models fit across data modalities rather than to

construct a new global model for each new combination of component modal-

ities. Similarly, for datasets collected across multiple sites or environments,

alignment may provide a compromise between fitting a separate model per site,

which fails to pool any shared information, and implementing a full hierarchical

model, which can be a labor-intensive exercise. In these cases, the sets Vp and

Vq for alignment contain not just topics from adjacent models, but topics from

across a larger ensemble.

As the types of data incorporated in biostatistical studies grow in number

and complexity, flexible techniques for dimensionality reduction and visualiza-

tion will continue to be an important component of the data analysis workflow.

Exploratory analysis can guide the critical examination of complex problems,

and topic alignment is a simple but useful addition to the toolbox available for

count data.

8 Software

The R package alto is available at lasy.github.io/alto. Simulations and

data analysis can be reproduced through package vignettes. Scripts for repro-

ducing simulations in a high-performance computing environment are available

at github.com/krisrs1128/topic_align.
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9 Supplementary Material

Supplementary figures, algorithms, and proofs are available online at http:

//biostatistics.oxfordjournals.org.
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Supplementary Materials

These supplemental materials provide further theoretical and experimental re-

sults that do not appear in the main paper. In more detail, these supplemental

sections describe,

• Section 1: A table of notation.

• Additional conceptual discussion of alignment and diagnostic measures,
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– Section 2: A description of the topic reordering strategy used to

ensure that alignment visualizations do not become tangled as models

increase in resolution.

– Section 3: Properties of the refinement score. Proves the maximiza-

tion and minimization results given in the main manuscript. Also

derives refinement scores in the case that weights are equal.

– Section 4: Contrasting diagnostics. Provides a simple example where

the refinement score is large, but not the coherence score, and vice

versa.

– Section 5: Comparisons of alignment diagrams from data drawn from

true LDA and null multinomial generative mechanisms. Shades re-

sults in according to either path ID or the proposed diagnostic mea-

sures.

• Further simulation results and commentary,

– Section 6: Provides alignment visualizations corresponding to the

background noise simulation in the main text.

– Section 7: Visualizes the convergence of diagnostic measures as the

number of samples increases. Suggests a form of consistency, albeit

in a limited case.

– Section 8: Discusses strain switching properties across number of

switched species S and all simulation replicates. Also provides specific

algorithm for strain switching.

• Discussion of related methods, supporting Section 6 of the main text.

– Section 9: Perplexity measures across simulation experiments. Pro-

vides a complementary approach to model selection.

– Section 10: Application of hierarchical LDA to the vaginal microbiota

dataset. Discusses interpretation of fitted parameters and contrasts

this with our proposed alignment.

1 Notation
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Notation Interpretation

N The total number of samples.

D The dimensionality of each sample.

xi The vector of counts for sample i. xi ∈ ND

ni The total count of sample i. That is, ni =
∑D
d=1 xid.

∆K The K-dimensional simplex.

γi The topic memberships for sample i. γi ∈ ∆K

K The number of topics.

1K A vector of K ones.

βk The composition of topic k. βk ∈ ∆D

B A D ×K matrix where the kth column is βk (composition of topic k).

λγ , λβ Hyperparameters of the Dirichlet distributions for γi and and βk, respectively.

p, q In general, two distributions. In all examples, these correspond to the locations

and weights associated with topics v in the graph defining an alignment.

C A matrix of transport costs from D coordinates of p to D′ coordinates of q. In

examples, C holds the JSDs between topics across two models. C ∈ RD×D
′

+

Π The optimal transport map between two distributions. Π ∈ RD×D
′

+

m ∈M A single model (m) within the larger ensemble of all models (M)

V,E The vertices and edges representing topics across all models and the potential

alignments between them.

v A specific topic within V .

e(v, v′) A pair of topics. e ∈ E
w : E → R+ The alignment weights associated with pairs of models on E.

w(e) The alignment weight for the pair e.

W The matrix of weights w (e) for all edges with a specified subset.

win, wout Normalized alignment weights, when weights are associated with directed edges.

k (v) The index of topic v within a subset of Vm of topics derived by model m.

γ (v) ∈ RN+ The vector of memberships γik(v) for topic v across all N samples i.

Vp, Vq Two subsets of topics. When these are written as Vm and Vm+1, these are

subsets from two models with m and m+ 1 topics, respectively.

ψm The permutation used to reorder topics for model m.

Ψm The set of potential permutations for reordering topics in model m.

Path (v) The (scalar) path identity associated with topic v.

P (v) The subset of vertices with the same path identity as topic v.

c (v) The coherence score associated with topic v.

r (v) The refinement score associated with topic v.
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νi The sample-specific background noise multinomial parameter in the back-

ground noise simulation.

α The extent of LDA structure in the background noise simulation. α = 1 gives

a true LDA model, while α = 0 corresponds to the multinomial null model.

Table 1: Glossary of notation used in this paper.

2 Topic ordering

Topics are not returned by the LDA fit in a specific order. Consequently, topics

connected by high weights across models may have different index k within their

respective model. For visualization purposes, it is useful to order topics within

each model such that similar topics are close to each other (Supplementary Fig-

ure 7). The ordering procedure seeks the optimal permutation of topic indices

ψ∗1:M such that the distance between strongly connected consecutive topics is

minimized:

arg min
ψ1:M∈Ψ1:M

M−1∑
m=1

∑
e∈Em,m+1

|ψm [k (v)]− ψm+1 [k (v′)]|w (e) ,

where the optimization is taken over the set of possible topic permutations Ψm

of topic labels in each model m and Em,m+1 is the set of edges between topics

in models m and m + 1. Finally, the reordered topic label for node v at level

m is given by k (v) ← ψ∗m (k (v)). For example, in Supplementary Figure 7,

suppose that the topics v ∈ Vm for the purple topic have values of k (v) of

1, . . . , 4, arranged from top to bottom. Then, the associated permutation ψ (v)

is (3, 1, 2, 4), also proceeding from top to bottom.

Instead of searching over all possible permutations, we approximate the op-

timal solution across a sequence of models M by applying a forward and a

backward pass, both of which rank the centers of gravity of a topic based on the

weights connecting it to topics from the previous (forward pass) or next (back-

ward pass) model. We find that additional forward and backward passes have

little impact on the rankings. Specifically, the set of topic indices is updated
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Figure 7: Given the high alignment weights with topic A, topic 3 index is

permuted such that this topic become the first one of its model.

using Algorithm 1.

for m = 2:M do

k′ (vm) := rank
(∑

vm−1∈Vm−1
k (vm−1)win (vm−1, vm)

)
,∀vm ∈ Vm

end

for m = M:2 do

k′ (vm−1) := rank
(∑

vm∈Vm
k (vm)wout (vm−1, vm)

)
,∀vm−1 ∈ Vm−1

end
Algorithm 1: Forward and backward pass for the topic ordering algorithm.

In the forward pass, topics are indexed so that they are close to the source

topics from which they draw the most weight, while in the backward pass,

they are placed near their high weight descendants.

3 Properties of the refinement score

Our definition of the refinement score is

r(v) :=
|Vl|
L− l

L∑
l′=l+1

∑
v′
l′∈Vl′

wout(v, v
′
l′)win(v, v′l′)

=
|Vl|
L− l

L∑
l′=l+1

∑
v′
l′∈Vl′

w(v, v′l′)
2

(
∑
u∈Vl

w(u, v′l′))(
∑
w∈Vl′

w(v, w))

where Vl is the set of all nodes in level l.

Here we give proofs for the assertions about the refinement score given in

the main text.
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Maximizing r(v)

Suppose v is in level l, and suppose further that w(v, v′l′) > 0 implies w(u, v′l′) =

0 for any u ∈ Vl\{v}. This means that every node in level l′ has only one parent

in level l. In that case,
∑
u∈Vl

w(u, v′l′) = w(v, v′l′), and we can write the inner

sum in the definition of r(v) as

∑
v′
l′∈Vl′

w(v, v′l′)
2

(
∑
u∈Vl

w(u, v′l′))(
∑
w∈Vl′

w(v, w))
=

1∑
w∈Vl′

w(v, w)

∑
v′
l′∈Vl′

w(v, v′l′)
2∑

u∈Vl
w(u, v′l′)

=
1∑

w∈Vl′
w(v, w)

∑
v′
l′∈Vl′

w(v, v′l′) = 1

Then the overall value for the refinement score is

r(v) =
|Vl|
L− l

L∑
l′=l+1

∑
v′
l′∈Vl′

w(v, v′l′)
2

(
∑
u∈Vl

w(u, v′l′))(
∑
w∈Vl′

w(v, w))

=
|Vl|
L− l

L∑
l′=l+1

1 = 1

This is the largest r(v) can be, as can be seen by noting that if w(u, v′l′) > 0

for some u ∈ Vl \ {v}, we will have

∑
v′
l′∈Vl′

w(v, v′l′)
2

(
∑
u∈Vl

w(u, v′l′))(
∑
w∈Vl′

w(v, w))
=

1∑
w∈Vl′

w(v, w)

∑
v′
l′∈Vl′

w(v, v′l′)
2∑

u∈Vl
w(u, v′l′)

<
1∑

w∈Vl′
w(v, w)

∑
v′
l′∈Vl′

w(v, v′l′)
2

w(v, v′l′)

=
1∑

w∈Vl′
w(v, w)

∑
v′
l′∈Vl′

w(v, v′l′) = 1

Therefore, a node will have a refinement score of 1 if and only if every node

in level l′ > l has only one parent in level l.

Note that if all the refinement scores take their maximum values, then each

node will have only one parent in the previous level, and the graph visualized

will be a tree. However, the parent-child relationships (l′ − l = 1) do not have

to be consistent with the ancestor-descendant (l′ − l > 1) relationships for all

of the refinement scores to be 1.
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Minimizing r(v)

Suppose we want to minimize r(v) for a node v in level l. We can write the

inner sum in the definition of r(v) as

1∑
w∈Vl′

w(v, w)

∑
v′
l′∈Vl′

w(v, v′l′)
2∑

u∈Vl
w(u, v′l′)

=
1∑

w∈Vl′
w(v, w)

∑
v′
l′∈Vl′

w(v, v′l′)

1 +
∑
u∈Vl\{v} w(u, v′l′)/w(v, v′l′)

Supposing that the weights w(v, w), w ∈ Vl′ are fixed, the quantity above goes

to zero when for each v′l′ s.t. w(v, v′l′) > 0, w(u, v′l′)→∞ for some u ∈ Vl \ {v}.
The refinement score r(v) is an average over these values, and so the refinement

score will also go to zero. Therefore, for r(v) to be small, all the descendants of

v need to primarily descend from some other node in the same level as v.

Refinement scores when all the weights are equal

One of the “edge” cases we are particularly interested in is one in which all the

weights are equal. This is our intuition about what will happen if the clusters

in the different levels don’t correspond to each other at all.

If all the edges are equal, no matter what l is, we will have win(v, v′l′) = 1,

and so the expression for the refinement score simplifies to

r(v) =
|Vl|
L− l

L∑
l′=l+1

∑
v′
l′∈Vl′

wout(v, v
′
l′)win(v, v′l′)

=
|Vl|

|Vl|(L− l)

L∑
l′=l+1

∑
v′
l′∈Vl′

wout(v, v
′
l′) = 1

Overall, these results show us how the refinement scores work, and give

us some insight into how the weights that we don’t visualize enter into the

refinement score calculations. For example, if we had an alignment graph for

which all the weights between subsequent levels were equal, we could still have

a node with a relatively high refinement score if the weights that we didn’t see

satisfied the criteria for maximizing the refinement score (each node in a later

level has only one ancestor in the level of the node we are interested in). On

the other hand, the alignment graph could look like a tree when we just look at

the weights between subsequent levels, but if the weights in the levels we don’t
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see are either all equal or such that the node we are interested in doesn’t have

descendants in the later levels, its refinement score could be very small.

4 Comparing diagnostics

The diagnostics measure different properties of an alignment. Both low coher-

ence / high refinement and low refinement / high coherence combinations are

possible, although in the examples below the diagnostics tend to track each

other. We would expect the refinement score to be high but the coherence score

to be low in the case that the alignment plot has a branching structure. If we

do the calculations for an alignment (or piece of an alignment) as shown in Sup-

plementary Figure 8, we can see that the refinement score for the highlighted

node will be 1 (the largest possible value for that node), but the coherence score

will be 1
2 (p+ p2). Plugging in similar numbers, where each of the children has

only a as an ancestor in that level, with more branching downstream of the

highlighted node shows that as the branching below that node increases, the

coherence score for a decreases but the refinement score stays at 1.

On the other hand, the refinement score can be small for a topic with high

coherence if that topic doesn’t have many descendants. As we see in the example

in Supplementary Figure 8, the highlighted node has a coherence score of 1

because it is connected with weight 1 to the only other node in its same path.

On the other hand, it has a low refinement score of 3δ
1+δ because all of the nodes

in the subsequent level are much more closely aligned to the other competing

topics.

Overall, the coherence score describes how “good” or “trustworthy” a topic

is; topics with high coherence scores appear consistently across levels. This is

true even if the refinement score is low — in that case, the refinement score is

likely to be low simply because the topic is present at low frequency. On the

other hand, the combination of high refinement and low coherence score suggests

that the topic is a mixture of several high-coherence topics. These topics can still

be useful to the analyst, as they simply represent a coarser-grained summary of

the data.
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Figure 8: Examples of situations where coherence and refinement scores are not

aligned. In the first example, the coherence score for the highlighted node is 1

but the refinement score is 3δ/(1 + δ). In the second example, the refinement

score for the highlighted node is 1 but the coherence score is 1
2 (p+ p2).

5 Comparing alignments of LDA-generated vs

null model datasets

Figure 9: Product alignment colored by path for simulated data. Left two

columns correspond to data coming from the true LDA model with K = 5, and

right two columns correspond to data coming from a null model.
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Figure 10: Product alignment colored by coherence score for simulated data.

Left two columns correspond to data coming from the true LDA model with

K = 5, and right two columns correspond to data coming from a null model.
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Figure 11: Product alignment colored by refinement score for simulated data.

Left two columns correspond to data coming from the true LDA model with

K = 5, and right two columns correspond to data coming from a null model.
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Figure 12: Transport alignment colored by path for simulated data. Left two

columns correspond to data coming from the true LDA model with K = 5, and

right two columns correspond to data coming from a null model.
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Figure 13: Transport alignment colored by coherence score for simulated data.

Left two columns correspond to data coming from the true LDA model with

K = 5, and right two columns correspond to data coming from a null model.
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Figure 14: Transport alignment colored by refinement score for simulated data.

Left two columns correspond to data coming from the true LDA model with

K = 5, and right two columns correspond to data coming from a null model.
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6 Example of alignments with increasing level

of background noise

Figure 15: Flows for LDA with background variation at levels α ∈ {0, 0.4, 0.6, 1}.
A more definitive topic structure emerges for larger α, with less exchange be-

tween neighboring branches.
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7 Convergence of diagnostics as N increases

Figure 16: Summary scores as the number of samples (N) in simulated datasets

increases (vertical panels). For each N , 50 datasets were generated and topic

alignment was performed on each dataset. Each line represents the score sum-

mary for one dataset. Panel (a) and (b) show the minimum of these scores for

each simulated dataset and model. We chose to show the minimum of the scores

because we observed in simulations that ”spurious” topics introduced at higher

resolution were characterized by low coherence and/or refinement scores. Con-

sequently, the minimum of the scores allows to identify drop-offs in the lower

envelope for the scores. Panel (c) shows the number of path identified at each

resolution. Panel (d) shows the distribution of the number of path at which a

plateau is identified in panel (c).
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8 Strain switching across S

In this appendix, we extend the discussion of strain switching. We provide

details of the perturbation mechanism (Algorithm 2) and investigate the sensi-

tivity of topic alignment across a wider range of S. We simulate strain-switching

data for S ∈ {10, 30, . . . , 230}. For each choice of S, we generate 50 datasets

and align topic models across a range K = 2, . . . , 10 of topics.

To gauge sensitivity to perturbed topics, we measure cosine similarities

across simulation replicates. If strain switching cannot be detected, then we

expect ξm1k ≈ ξm2k and ξm3k ≈ ξm4k for all k,m — the estimated topics will lack

specificity for any member of the equivalent pairs. Figure 17 shows the estima-

tion specificity, 1
K

∑m
k=1 |ξm1k − ξm2k|+ |ξm3k − ξm4k| for each of the 50 replicates for

each S. This statistic quantifies the difference between rows 1-2 and 3-4 visible

in the heatmap of topic similarities, but across all simulation replicates.

Figure 17: The ability of models to detect strain switching as a function of

K and S. Model resolution increases across panels moving from left to right.

Within each panel, the size of the number of swapped species S is plotted

against the estimation sensitivities defined in the main text. The larger the

subset S, the higher the sensitivity. Further, high-resolution models can more

easily distinguish perturbed topics, as indicated by the steeper slopes for panels

on the right.

As expected, larger perturbations are more easily detected. For models with

K ≤ 5, there is a small increase in estimation specificity as S increases; strain

switching might have a small effect on the dominant signatures in the data. For

K > 5, the specificity as a function of S steepens – more highly resolved topics

can more easily distinguish between perturbed topics.
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Data: Topics βk, subset size S to perturb, K̃ of the topics to perturb,

number of perturbations R.

for k ≤ K̃ do
Sample S coordinates to perturb, and define a mapping π such that

π (s) provides the sth perturbed index.

for r ≤ R do

For the subset S, draw νrk ∼ Dir
(
λS1|S|

)
Renormalize νrk := ‖βk[S]‖1

‖νr‖1 νr

Perturb βk at coordinates specified by S,

β̃rkd :=

βkd if d /∈ S

νrkπ(s) otherwise.

end

end
Algorithm 2: Strategy for generating perturbed topics.

9 Perplexity comparisons

Perplexity is defined as

perplexity (x∗1, . . . , x
∗
n) = exp

(
−
∑n
i=1 log p (x∗i )∑n

i=1Ni

)
, (2)

where Ni is the total count of document i. Hence, test documents x∗i with low

likelihood-per-read under the fitted model p have high perplexity.

Figure 18: Perplexity for train and test samples for data generated by a true

LDA model with K = 5 topics. The “elbow” in train and test perplexity can

be used to detect the true value of K.
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Figure 19: Perplexity for train and test samples from data generated by an LDA

model with varying levels of background noise. Panel titles match the α from

the corresponding simulation in the main text. For smaller α, the “elbow” in

perplexity sometimes appears at incorrect values of K (e.g., 6 - 7 for α = 0.2

and 4 - 5 for α = 0.4). The specific locations of these drop-offs is dependent on

the λν hyperparameter generating this background noise.
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Figure 20: In and out-of-sample perplexity for data generated according to

the strain switching setup. Rows provide different values of S, the number

of switched strains. Perplexity at small K is slightly larger when S is large.

Further, for large S, perplexity continues to decrease slightly even beyond the

“elbow” at K = 5. However, no structure at K = 7 suggests that two of the

topics may exhibit switching behavior.
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10 Hierarchical LDA comparison

Figure 21: Hierarchical LDA (hLDA) model of the vaginal microbiome data.(continued)
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Figure 21: (Caption continued.) hLDA was fit to a subset of the vaginal micro-

biome data with a depth of 4 and a concentration parameter (gamma) of 0.1.

(Top) Hierarchical structure of hLDA topics. (Middle) Topic composition for

each vertical path of the hierarchical structure. There is a vertical path for each

leave of the hierarchical tree and path are labeled and colored according to the

leave topic number. Each path is shown on a vertical panels. Topics from each

vertical path are on the x-axis, ordered by depth, starting with the root topic

on the left (This implies that the topic composition of the root topic is repeated

for each vertical path). Features (”words”) are shown vertically. The dot size

is proportional to the proportion of a feature in a topic. The dot color is set to

match the color of the topics on the top panel. (Bottom) Sample composition

in terms of topic proportion. Horizontal panel and x-axis are the same as in

the middle panel. Each horizontal line represents a sample. Given that samples

can only be composed of topics on a given vertical path, samples have been

assigned to their path and ordered by path. Colors match the topics color on

the top panel. Transparency is inversely proportional to topic proportion in

each sample.
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